skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Morgan, Marvin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report initial observations aimed at the characterization of a third interstellar object. This object, 3I/ATLAS or C/2025 N1 (ATLAS), was discovered on 2025 July 1 UT and has an orbital eccentricity ofe ∼ 6.1, perihelion ofq ∼ 1.36 au, inclination of ∼175°, and hyperbolic velocity ofV ∼ 58 km s−1. We report deep stacked images obtained using the Canada–France–Hawaii Telescope and the Very Large Telescope that resolve a compact coma. Using images obtained from several smaller ground-based telescopes, we find minimal light-curve variation for the object over a ∼4 day time span. The visible/near-infrared spectral slope of the object is 17.1% ± 0.2%/100 nm, comparable to other interstellar objects and primitive solar system small bodies (comets and D-type asteroids). Moreover, 3I/ATLAS will be observable through early 2025 September, then unobservable by Earth-based observatories near perihelion due to low solar elongation. It will be observable again from the ground in late 2025 November. Although this limitation unfortunately prohibits detailed Earth-based observations at perihelion when the activity of 3I/ATLAS is likely to peak, spacecraft at Mars could be used to make valuable observations at this time. 
    more » « less
    Free, publicly-accessible full text available August 13, 2026
  2. Abstract Tidal heating on Io due to its finite eccentricity was predicted to drive surface volcanic activity, which was subsequently confirmed by the Voyager spacecraft. Although the volcanic activity in Io is more complex, in theory volcanism can be driven by runaway melting in which the tidal heating increases as the mantle thickness decreases. We show that this runaway melting mechanism is generic for a composite planetary body with liquid core and solid mantle, provided that (i) the mantle rigidity,μ, is comparable to the central pressure, i.e.,μ/(ρgRP) ≳ 0.1 for a body with densityρ, surface gravitational accelerationg, and radiusRP; (ii) the surface is not molten; (iii) tides deposit sufficient energy; and (iv) the planet has nonzero eccentricity. We calculate the approximate liquid core radius as a function ofμ/(ρgRP), and find that more than 90% of the core will melt due to this runaway forμ/(ρgRP) ≳ 1. From all currently confirmed exoplanets, we find that the terrestrial planets in the L 98-59 system are the most promising candidates for sustaining active volcanism. However, uncertainties regarding the quality factors and the details of tidal heating and cooling mechanisms prohibit definitive claims of volcanism on any of these planets. We generate synthetic transmission spectra of these planets assuming Venus-like atmospheric compositions with an additional 5%, 50%, and 98% SO2component, which is a tracer of volcanic activity. We find a ≳3σpreference for a model with SO2with 5–10 transits with JWST for L 98-59bcd. 
    more » « less